Jump to content
SAU Community

Hypergear Turbochargers and High flow Services Development thread


Recommended Posts

I already said the comparison is pointless unless we use the same dyno with same car. I didn't make any of those sheets either.

To get 200rwkws with 3076 .82 by 4000RPMs that is possible with race fuel and cam gears which you can add heaps of timing down low. But I haven't seen any one made that with all stock parts.

Or use a 71mm comp wheel with cam gears. But I think its hard to crack 300rwkws with 98 fuel.

I can't find any that come even close to 200rwkw at 4000rpm... Care to point me in the right direction?!?

See this is a baby 52T ATR43g2 high flow in .63 rear with cam gear and 98 fuel. Its pretty close to 200rwkws by 4000RPMs. But Its going to be maxed around 270rwkws ish. If you run Race fuel in that you will get more then 200rwkws by 4000RPMs maxing out at 300rwkws.

253rwkwsop6highflow.JPG

Link to comment
Share on other sites

No race fuels, no cams. They do it.

I dont wish to debate the garrett vs your turbo, I just wanted to point out it was a poor comparison.

One further thing you may want to consider is how long the curve stays concave. The above graphs show the 3076 has a far more convex curve. This would be highly appealing to many people looking for as much area under the curve as possible.

SimonR32, majority of results I found were on this site, search and yee will find. It has been some 6 months again, I since purchased a 3037 (and ironically am now selling it) and havent looked since.

Link to comment
Share on other sites

For once more I've said the comparison is pointless unless certain conditions are met (which is not), and I'm not the person who posted them or responsible for their actions.

I've seen Simon-R32's results. How ever that is running off .63 rear housing with a 44mm external gate alone with all other mods. If I do all those to my test car then I can also get his result. He's not running 98 fuel either.

After reading through his thread and understood what he've gone though for his result would you just bolton a 3076 in .63 int gated rear to your factory setup and hopping for 300rwkws with pump fuel?

How ever my goal is building a solid bolton turbo that can produce such power with less as possible modifications done to the factory package.

If I modify my car to the stage as his and selling my services to others based on that result, I call that fraud. I'm not trying to modify my setup to bring out the best out of a turbo, but trying to build a turbo to bring out the best of a "stock setup".

To me GT3076 in .63 rear internally gated can not make a genuine 300rwkws with fully stock setup and 98 fuel. From my experiment It will drop lot of boost with standard actuator, replace it with a high pressure valve and gate controller, it creepes so much heat that turned it self red hot and you lose power after every run.

Link to comment
Share on other sites

SimonR32, majority of results I found were on this site, search and yee will find. It has been some 6 months again, I since purchased a 3037 (and ironically am now selling it) and havent looked since.

Look again, I think your memory has failed you :)

Link to comment
Share on other sites

Look again, I think your memory has failed you :banana:

I agree, I cant see any 3076s (0.82 housing) that make 200rwkw at 4,000rpm on 98 fuel.

I can see a few HKS 2835 Pro S setups that make 200rwkw at 4,000rpm but even they need E85 fuel for that.

Link to comment
Share on other sites

The target is 100-120 KPH as most graphs are in speed rather than RPM.

With different ratios or wheel sizes this is an approximate marker for the 4000RPM range in 4th gear.

I remember feeling entirely the same, all the 3076 rage rah rah rah, smaller turbos are far stronger down low etc etc. Some better investigation brought that 200kw marker to light.

The graph above for the 52T is showing 200KW @ 4200RPM at 17psi, look at how much earlier the boost comes in too, the 56T would easily exceed that at that point. Its on full boost by 3450RPM, do you really think the 56T will be 1000RPM laggier, no. But it will flow a considerable amount more at that point.

Flow = power, direct relationship. < thats a full stop.

Link to comment
Share on other sites

The target is 100-120 KPH as most graphs are in speed rather than RPM.

With different ratios or wheel sizes this is an approximate marker for the 4000RPM range in 4th gear.

I remember feeling entirely the same, all the 3076 rage rah rah rah, smaller turbos are far stronger down low etc etc. Some better investigation brought that 200kw marker to light.

The graph above for the 52T is showing 200KW @ 4200RPM at 17psi, look at how much earlier the boost comes in too, the 56T would easily exceed that at that point. Its on full boost by 3450RPM, do you really think the 56T will be 1000RPM laggier, no. But it will flow a considerable amount more at that point.

Flow = power, direct relationship. < thats a full stop.

So the turbo above doesnt even meet your requirement of 200rwkw @ 4000rpm but your saying a larger turbo (56T) will?

Surely with the number of them out there a real life example would be available if it was such an easy thing.

Link to comment
Share on other sites

The target is 100-120 KPH as most graphs are in speed rather than RPM.

With different ratios or wheel sizes this is an approximate marker for the 4000RPM range in 4th gear.

I remember feeling entirely the same, all the 3076 rage rah rah rah, smaller turbos are far stronger down low etc etc. Some better investigation brought that 200kw marker to light.

The graph above for the 52T is showing 200KW @ 4200RPM at 17psi, look at how much earlier the boost comes in too, the 56T would easily exceed that at that point. Its on full boost by 3450RPM, do you really think the 56T will be 1000RPM laggier, no. But it will flow a considerable amount more at that point.

Flow = power, direct relationship. < thats a full stop.

Using wheels speed is inaccurate unless you know diff ratios, wheel/tyres sizes etc. and this is why you are being misguided!

The 56T is a 0.84 rear and 52T is a 0.63 rear, so a bigger compressor and bigger exhaust housing would make for about 700-1000rpm laggier yes!

Edited by SimonR32
Link to comment
Share on other sites

Using wheels speed is inaccurate unless you know diff ratios, wheel/tyres sizes etc. and this is why you are being misguided!

The 56T is a 0.84 rear and 52T is a 0.63 rear, so a bigger compressor and bigger exhaust housing would make for about 700-1000rpm laggier yes!

Which is why I have not made point to be exact.

It has also been documented that there are gains to be had in the larger housing over the smaller one. The added volume aids in lower combustion temperatures and more timing can be wound into the motor.

One correction to my 'claim' that has shed many a tear it seems, results were more consistent when using an exhaust cam gear.

Link to comment
Share on other sites

You are comparing Dyno Dynamics readings with a Dynapack reading - it can't really be done.

yes it can.... Dynapak has a correction mode that will give it DD readings to within a kw or 2 :banana:

a well tuned RB25 with a 3076 should achieve close to the 200rwkw mark by roughly 4000RPM. I am talking about an internally standard motor, no cams.

on pulp... a 3071/2835 will just make it... but only if you reeeealy push it

fwiw...

this is my car: tuned on the same dyno (trent @ status)

unopened RB25 with an HKS 2835 pro s, (3071 w HKS spec .68 rear). I am running a greddy rb26 ex cam gear, hybrid GT intercooler, stock throttle body, plenum etc

the red line is BP ultimate and the blue line is manildra e85

@ 4000 rpm pulp makes 190rwkw and e85 makes 210rwkw

gallery_36777_3194_124976.jpg

Link to comment
Share on other sites

Larger the trim is the more vertical power behavior you get. To get a smooth build up of power you need to run a large comp housing with a small trimmed mid size comp wheel.

I wouldn't call the smoother the better. turbos do produce this vertical power increasement has a very sharp and strong punch on acceleration. while the build up turbo would give a lot smoother sort of feel.

But if you are dragging, The car that reaches peek power and torque quicker is more likely to win.

We can build them to do either, so I would say it depends on people's preferred driving ability.

I think your above power curve of the ProS is similar to this one here:

atr43G363295rwkw.jpg

Its a customized GT30 wheel running on stock cams and 98 fuel. That would be the most responsive towards 300rwkws as you can get. Car wasn't strapped down, had plenty wheel spin.

Link to comment
Share on other sites

Wow! Full boost before 2500 and 250 killerwasps!

Dragon eggs for sure.

Yes Stao I do agree the concave curve would feel faster, although I disagree that it is likely to win. I would say it is fair to say it would have more traction issues for the same final output :banana:

Link to comment
Share on other sites

Only issue with that last dyno plot tao is the power falls over after 5,600rpm. I wonder how far it would fall if you kept going till 7,000rpm?

But yes its quite responsive, very impressive. Hard to have everything I suppose.

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



×
×
  • Create New...